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The surface susceptibility exponent for the polymer 
problem 

S G Whittington, G M Torrie and A J Guttmannt 
Department of Chemistry, University of Toronto, Toronto, Canada M5S 1 A l  

Received 16 May 1979, in final form 26 June 1979 

Abstract. Series analysis methods are used to estimate the surface susceptibility exponent 
for the polymer analogue of a magnet with a free surface, on the square and simple cubic 
lattices. Our exponent estimates are slightly larger than the surface scaling predictions for 
both lattices. 

Over the last few years there have been a number of attempts to use scaling arguments 
to make predictions about surface effects in critical phenomena (Watson 1972, Binder 
and Hohenberg 1972,1974, Barber 1973, Fisher 1971,1973, Bray and Moore 1977). 
Like all scaling predictions, these results rest on an ansafz which can most readily be 
tested by comparing the predictions with results from an independent approach such as 
Monte Carlo (Binder 1972) or series expansions (Watson 1972, Binder and Hohenberg 
1972, 1974, Ritchie and Fisher 1973, Barber et a1 1978, Whittington et a1 1979). We 
have recently investigated the scaling predictions concerning local susceptibilities both 
for the polymer problem (the zero-spin space-dimension limit of the D vector model) 
(Barber et a1 1978) and for the Ising model (Whittington et a1 1979), with the 
conclusion that surface scaling is probably valid for both these cases, but that an 
extension due to Bray and Moore (1977), while consistent with series estimates for the 
Ising problem in two and three dimensions and with the polymer problem in three 
dimensions, disagrees with series analysis results for the polymer problem in two 
dimensions. 

Scaling predictions (e.g. Watson 1972) have also appeared for global exponents 
such as ys, which characterises the divergence of the total surface susceptibility, xs. 
These suggest that ys  can be expressed in terms of the bulk exponents y and v by the 
relation 

ys = y + v. (1) 
y characterises the divergence of the bulk suceptibility (x) while v characterises the 
correlation length or, for the polymer problem, the mean square end-to-end length of 
the polymer, (RZ), as 

(RZ) - n Z V .  ( 2 )  
Equation (1) has been tested, using series analysis techniques, for the Ising problem 
(e.g. Watson 1972) and for the Heisenberg problem (Ritchie and Fisher 1973). For the 
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Ising problem the series are rather short (table I of Watson 1972) but the data are just 
consistent with equation ( 3  ). The discrepancy in the exponents is less than 0.05 in two 
dimensions and less than 0.1 in three dimensions, but the estimates of ys have large 
associated uncertainties. For the Heisenberg problem (in three dimensions) ys appears 
to exceed y + I/ by about 0.1. One of the aims of the present paper is to test the validity 
of equation (1) for the polymer problem. 

We consider various classes of self-avoiding walks on a lattice, confined to a 
half-space. For convenience consider the N-dimensional hypercubic lattice whqse 
lattice points are the integer points in EN.  Let ck) be the number, per site of the 
(N - 1)-dimensional lattice, of n-edge self-avoiding walks which begin at a point in the 
(N- 1)-dimensional hyperplane z1 = i, and are confined to z1 2 1,  and let cfl be the 
number, per site of the N-dimensional lattice, of otherwise unrestricted a-edge self- 
avoiding walks. To emphasise the analogy with the critical phenomena problem we 
write their generating functions as 

and 

The xl  are analogous to layer susceptibilities (which measure the response of the 
magnetisation of the ith layer to a change in the bulk field) and ,y is analogous to the bulk 
susceptibility of the magnetic problem. Clearly 

x 1 ~ ' X z ~ .  * .<x, ( 5 )  

and this set of inequalities, coupled with a result obtained previously about the 
divergence of x1 and x (Whittington 1975) establishes that all their generating functions 
diverge at the same point, x = x, = g-'. The surface susceptibility is defined as 

If we assume that, as x 3 x,, 

xs-As(1 -px)-y ' ,  (3 
x - A ( l - p ~ ) - ~  (8) 

x1 -A1(1 -pLx)-yl, (9) 

c!) = c,, V n  si, (10) 

and 

then, since 

we obtain immediately 

y s ys  y + 1. (11)  
This should be compared with the scaling prediction in equation (1). The graphs 
contributing to xS are self-avoiding walks which start on one side of the surface plane 
and have at least one vertex on the other side of this plane, which suggests that the 
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exponent will be relevant eo the problem of polymer adsorption at the liquid4iquid 
interface. 

We have derived the first fourteen terms in the expansion of xS for the cubic lattice 
and the first twenty-one terms for the square lattice, and the results appear in table 1. 

Table 1. Coefficients of the surface susceptibility series. 

n Cubic lattice Square lattice 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1 
10 
71 

440 
2561 

14 230 
77 179 

408 784 
2137 605 

11 017 370 
56 339 979 

285 324 892 
1437 391 977 
7191 076 878 

1 
6 

25 
90 

307 
990 

3125 
9548 

28 887 
85 602 

252 215 
732 596 

2119 923 
6071 214 

17 341 455 
49 143 504 

138 999 493 
390 711 254 

1096655313 
3062640096 
8543465975 

Using standard ratio methods (Gaunt and Guttmann 1974), we estimate the exponent 

(12) 

Ys by 
2 YE = 1 +In[(a,/p an-2)- 11, 

yf f l ,  = (1/2i)[nyjf,” - ( n  -2i)ygli!i], 

and the linear and quadratic extrapolants 

(13) 
with i = 1 and 2 respectively. As usual, extrapolations based on alternate terms have 
been used to minimise the oscillations characteristic of loose-packed lattices. The 
values used for p were 2.6385 and 4,6835 (Sykes et a1 1972). 

For the cubic lattice (see table 2) the linear extrapolants are increasing smoothly and 
suggest ys> 1.795, while the quadratic extrapolants are decreasing and suggest y s <  
1.825. Our final estimate is ys  = 1.81 f 0.02. A PadC analysis for this series is some- 
what erratic but not inconsistent with this estimate. 

The Neville table for the square lattice is shown in table 3. Linear extrapolants 
suggest ys>  2,095 and quadratic extrapolants suggest ys<2.105. We formed PadC 
approximants to ( x ,  - x)(d/dx)(ln x s ( x ) )  and evaluated these at the critical point, 
x c  = p - l .  The results are shown in table 4. These results suggest that y s  < 2.1 1 and is 
probably close to 2-10. As our final estimate we take y s =  2.10*0.01. 
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Table 2. Neville table for the cubic lattice. 

7 
8 
9 

10 
11 
12 
13 
14 

2.308 577 
2.238 512 
2.181 981 
2.143 460 
2.108 621 
2.083 892 
2.060 157 
2.042 874 

1.552 455 
1.684 574 
1.738 895 
1.763 250 
1,778 503 
1.786 054 
1.793 607 
1.796 766 

2.720 741 
2,123 318 
1.971 946 
1.881 264 
1,847 816 
1.831 662 
1.827 591 
1.823 545 

Table 3. Neville table for the square lattice. 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2.397 901 
2.375 945 
2.347 807 
2.332 875 
2.312 772 
2.301 787 
2.286 613 
2.278 225 
2.266 297 
2.259 675 
2.250 032 

2.050 162 
2.060 013 
2.072 292 
2.074 450 
2.085 039 
2.084 171 
2,090 423 
2.089 732 
2.093 608 
2,092 724 
2,095 518 

2,178 670 
2.120 280 
2,122 084 
2,110 542 
2,120 093 
2.113 332 
2.107 922 
2.109 195 
2.105 550 
2.104 694 
2.103 639 

3 2.1703 2,1541 2.1621 
4 2.2958 2.1404 2.1352 
5 2.1361 2,1503 2.1219 
6 2.1248 2.1128 2.1096 
7 2.1099 2.1109 2.1106 
8 2.1106 2.1110 2.1072 
9 2.1082 2,1144 2,1559 

Using the generally accepted values of y and v in two and three dimensions ( y  = $. g, 
and v =a,  3 respectively), the scaling predictions for ys are -- 1 e77 
respectively. The central estimates from the series analysis exceed the predictions by 
0.02 and 0.04 respectively, while taking the lowest values consistent with the series 
results still leaves discrepancies of 0.01 and 0.02 respectively. Notice that the deviation 
from scaling is in the same direction as for the king and Heisenberg models. 

Of course, y and v are not known exactly and it is conceivable that the generally 
assumed values might be in error by amounts of the order of 0.01. To circumvent this 
uncertainty, and to avoid the use of an assumed value for p, we have formed the series 

3 3  = 2.083 and 
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which should behave asymptotically as bn - n’ with 4 = y + U - ys.  If scaling is obeyed 
4 should be zero. Estimates of q5 are given by the sequence {&}, where 4,, = 
(n/2)(bn/b,-2 - 1). This sequence and linear, quadratic and cubic extrapolants are 
shown in table 5 .  From those results we estimate 4 3 -0.02 in two dimensions and 
4 = -0.05 f 0.02 in three dimensions. These results are estimates of the maximum 
extent of the possible errors in scaling predictions of ys.  The estimates of 4 are also 
completely consistent with our direct estimates of ys quoted above, from which it 
follows that 4 = -0.017 * 0.01 and 4 = -0.04* 0.02 in two and three dimensions 
respectively. 

Table 5. Neville table showing estimates of ‘breakdown of scaling exponent’ d. 

Simple cubic lattice Square lattice 

Alternate extrapolants Alternate extrapolants 

n dn linear quadratic cubic n de linear quadratic 

6 
7 
8 
9 

10 
11 
12 
13 
14 - 

-0.2362 
-0.2172 
-0.2019 
-0.1899 
-0.1797 
-0.1707 
-0.1632 
-0.1562 
-0.1505 

-0.055 1 
- 0.0 8 4 5 
-0.0992 
-0.0945 
-0.0909 
-0.0842 
-0.0806 
-0.0766 
-0.0741 

-0.9584 
-0.1433 
-0.1070 0,3188 
-0,0784 -0.0352 
-0.0663 -0.0323 
-0.0601 -0.0418 
-0.0596 -0,0518 
-0.0577 -0,0545 

12 -0.1041 
13 -0.0984 
14 -0.0948 
15 -0.0902 
16 -0.0873 
17 -0.0835 
18 -0.0811 
19 -0.0780 
20 -0.0760 

-0.03916 
-0.0388 
-0.0366 -0,0294 
-0,0349 -0.0230 
-0.0326 -0.0239 
-0.0320 -0,0219 
-0.0309 -0,0208 
-0.0296 -0,0201 

Three possible explanations for this behaviour suggest themselves. One is the 
breakdown of the scaling relation ys = y + v. Another is that the correlation exponent 
appropriate to the surface problem is different to the correlation function appropriate 
to the bulk problem. The third possibility is that these results are produced by analysis 
of series of insufficient length. At present we have no reason to select one of these 
explanations as being the more likely. 
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