The surface susceptibility exponent for the polymer problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13789
(http://iopscience.iop.org/0305-4470/13/3/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:46

Please note that terms and conditions apply.

The surface susceptibility exponent for the polymer problem

S G Whittington, G M Torrie and A J Guttmann \dagger
Department of Chemistry, University of Toronto, Toronto, Canada M5S 1A1

Received 16 May 1979, in final form 26 June 1979

Abstract

Series analysis methods are used to estimate the surface susceptibility exponent for the polymer analogue of a magnet with a free surface, on the square and simple cubic lattices. Our exponent estimates are slightly larger than the surface scaling predictions for both lattices.

Over the last few years there have been a number of attempts to use scaling arguments to make predictions about surface effects in critical phenomena (Watson 1972, Binder and Hohenberg 1972, 1974, Barber 1973, Fisher 1971, 1973, Bray and Moore 1977). Like all scaling predictions, these results rest on an ansatz which can most readily be tested by comparing the predictions with results from an independent approach such as Monte Carlo (Binder 1972) or series expansions (Watson 1972, Binder and Hohenberg 1972, 1974, Ritchie and Fisher 1973, Barber et al 1978, Whittington et al 1979). We have recently investigated the scaling predictions concerning local susceptibilities both for the polymer problem (the zero-spin space-dimension limit of the D vector model) (Barber et al 1978) and for the Ising model (Whittington et al 1979), with the conclusion that surface scaling is probably valid for both these cases, but that an extension due to Bray and Moore (1977), while consistent with series estimates for the Ising problem in two and three dimensions and with the polymer problem in three dimensions, disagrees with series analysis results for the polymer problem in two dimensions.

Scaling predictions (e.g. Watson 1972) have also appeared for global exponents such as γ_{s}, which characterises the divergence of the total surface susceptibility, χ_{s}. These suggest that γ_{s} can be expressed in terms of the bulk exponents γ and ν by the relation

$$
\begin{equation*}
\gamma_{\mathrm{s}}=\gamma+\nu . \tag{1}
\end{equation*}
$$

γ characterises the divergence of the bulk suceptibility (χ) while ν characterises the correlation length or, for the polymer problem, the mean square end-to-end length of the polymer, $\left\langle R_{n}^{2}\right\rangle$, as

$$
\begin{equation*}
\left\langle R_{n}^{2}\right\rangle \sim n^{2 \nu} . \tag{2}
\end{equation*}
$$

Equation (1) has been tested, using series analysis techniques, for the Ising problem (e.g. Watson 1972) and for the Heisenberg problem (Ritchie and Fisher 1973). For the
\uparrow Permanent address: Department of Mathematics, University of Newcastle, Newcastle, NSW, 2308, Australia.

Ising problem the series are rather short (table I of Watson 1972) but the data are just consistent with equation (1). The discrepancy in the exponents is less than 0.05 in two dimensions and less than $0 \cdot 1$ in three dimensions, but the estimates of γ_{s} have large associated uncertainties. For the Heisenberg problem (in three dimensions) γ_{s} appears to exceed $\gamma+\nu$ by about $0 \cdot 1$. One of the aims of the present paper is to test the validity of equation (1) for the polymer problem.

We consider various classes of self-avoiding walks on a lattice, confined to a half-space. For convenience consider the N-dimensional hypercubic lattice whose lattice points are the integer points in E^{N}. Let $c_{n}^{(i)}$ be the number, per site of the ($N-1$)-dimensional lattice, of n-edge self-avoiding walks which begin at a point in the ($N-1$)-dimensional hyperplane $z_{1}=i$, and are confined to $z_{1} \geqslant 1$, and let c_{n} be the number, per site of the N-dimensional lattice, of otherwise unrestricted n-edge selfavoiding walks. To emphasise the analogy with the critical phenomena problem we write their generating functions as

$$
\begin{equation*}
\chi_{i}(x)=1+\sum_{n \geqslant 1} c_{n}^{(i)} x^{n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi(x)=1+\sum_{n \geqslant 1} c_{n} x^{n} . \tag{4}
\end{equation*}
$$

The χ_{i} are analogous to layer susceptibilities (which measure the response of the magnetisation of the i th layer to a change in the bulk field) and χ is analogous to the bulk susceptibility of the magnetic problem. Clearly

$$
\begin{equation*}
\chi_{1} \leqslant \chi_{2} \leqslant \ldots \leqslant x, \tag{5}
\end{equation*}
$$

and this set of inequalities, coupled with a result obtained previously about the divergence of χ_{1} and χ (Whittington 1975) establishes that all their generating functions diverge at the same point, $x=x_{\mathrm{c}}=\mu^{-1}$. The surface susceptibility is defined as

$$
\begin{equation*}
\chi_{\mathrm{s}}=1+\sum_{i \geqslant 1}\left(\chi-\chi_{i}\right)=1+\sum_{n \geqslant 1} a_{n} x^{n} . \tag{6}
\end{equation*}
$$

If we assume that, as $x \rightarrow x_{\mathrm{c}}^{-}$,

$$
\begin{align*}
& \chi_{\mathrm{s}} \sim A_{\mathrm{s}}(1-\mu x)^{-\gamma_{\mathrm{s}}}, \tag{7}\\
& \chi \sim A(1-\mu x)^{-\gamma} \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\chi_{1} \sim A_{1}(1-\mu x)^{-\gamma_{1}} \tag{9}
\end{equation*}
$$

then, since

$$
\begin{equation*}
c_{n}^{(i)}=c_{n}, \quad \forall n \leqslant i, \tag{10}
\end{equation*}
$$

we obtain immediately

$$
\begin{equation*}
\gamma \leqslant \gamma_{\mathrm{s}} \leqslant \gamma+1 \tag{11}
\end{equation*}
$$

This should be compared with the scaling prediction in equation (1). The graphs contributing to $\chi_{\text {s }}$ are self-avoiding walks which start on one side of the surface plane and have at least one vertex on the other side of this plane, which suggests that the
exponent will be relevant to the problem of polymer adsorption at the liquid-liquid interface.

We have derived the first fourteen terms in the expansion of χ_{s} for the cubic lattice and the first twenty-one terms for the square lattice, and the results appear in table 1.

Table 1. Coefficients of the surface susceptibility series.

n	Cubic lattice	Square lattice
1	1	1
2	10	6
3	71	25
4	440	90
5	2561	307
6	14230	990
7	77179	3125
8	408784	9548
9	2137605	28887
10	11017370	85602
11	56339979	252215
12	285324892	732596
13	1437391977	2119923
14	7191076878	6071214
15		17341455
16		49143504
17		138999493
18		390711254
19		1096655313
20		8062640096
21		8543465975

Using standard ratio methods (Gaunt and Guttmann 1974), we estimate the exponent γ_{s} by

$$
\begin{equation*}
\gamma_{\mathrm{s}, n}^{(0)}=1+\frac{1}{2} n\left[\left(a_{n} / \mu^{2} a_{n-2}\right)-1\right] \tag{12}
\end{equation*}
$$

and the linear and quadratic extrapolants

$$
\begin{equation*}
\gamma_{\mathrm{s}, n}^{(i)}=(1 / 2 i)\left[n \gamma_{\mathrm{s}, n}^{(i-1)}-(n-2 i) \gamma_{\mathrm{s}, n-2}^{(i-1)}\right], \tag{13}
\end{equation*}
$$

with $i=1$ and 2 respectively. As usual, extrapolations based on alternate terms have been used to minimise the oscillations characteristic of loose-packed lattices. The values used for μ were $2 \cdot 6385$ and $4 \cdot 6835$ (Sykes et al 1972).

For the cubic lattice (see table 2) the linear extrapolants are increasing smoothly and suggest $\gamma_{\mathrm{s}}>1.795$, while the quadratic extrapolants are decreasing and suggest $\gamma_{\mathrm{s}}<$ 1.825 . Our final estimate is $\gamma_{\mathrm{s}}=1.81 \pm 0.02$. A Padé analysis for this series is somewhat erratic but not inconsistent with this estimate.

The Neville table for the square lattice is shown in table 3. Linear extrapolants suggest $\gamma_{\mathrm{s}}>2.095$ and quadratic extrapolants suggest $\gamma_{\mathrm{s}}<2 \cdot 105$. We formed Padé approximants to $\left(x_{\mathrm{c}}-x\right)(\mathrm{d} / \mathrm{d} x)\left(\ln \chi_{\mathrm{s}}(x)\right)$ and evaluated these at the critical point, $x_{\mathrm{c}}=\mu^{-1}$. The results are shown in table 4. These results suggest that $\gamma_{\mathrm{s}}<2 \cdot 11$ and is probably close to $2 \cdot 10$. As our final estimate we take $\gamma_{\mathrm{s}}=2 \cdot 10 \pm 0 \cdot 01$.

Table 2. Neville table for the cubic lattice.

n	$\gamma_{n}^{(0)}$	$\gamma_{n}^{(1)}$	$\gamma_{n}^{(2)}$
7	2.308577	1.552455	2.720741
8	2.238512	1.684574	2.123318
9	2.181981	1.738895	1.971946
10	2.143460	1.763250	1.881264
11	2.108621	1.778503	1.847816
12	2.083892	1.786054	1.831662
13	2.060157	1.793607	1.827591
14	2.042874	1.796766	1.823545

Table 3. Neville table for the square lattice.

n	$\gamma_{n}^{(0)}$	$\gamma_{n}^{(1)}$	$\gamma_{n}^{(2)}$
11	$2 \cdot 397901$	$2 \cdot 050162$	$2 \cdot 178670$
12	$2 \cdot 375945$	$2 \cdot 060013$	$2 \cdot 120280$
13	$2 \cdot 347807$	$2 \cdot 072292$	$2 \cdot 122084$
14	$2 \cdot 332875$	$2 \cdot 074450$	$2 \cdot 110542$
15	$2 \cdot 312772$	$2 \cdot 085039$	$2 \cdot 120093$
16	$2 \cdot 301787$	$2 \cdot 084171$	$2 \cdot 113332$
17	$2 \cdot 286613$	$2 \cdot 090423$	$2 \cdot 107922$
18	$2 \cdot 278225$	$2 \cdot 089732$	$2 \cdot 109195$
19	$2 \cdot 266297$	$2 \cdot 093608$	$2 \cdot 105550$
20	$2 \cdot 259675$	$2 \cdot 092724$	$2 \cdot 104694$
21	$2 \cdot 250032$	$2 \cdot 095518$	$2 \cdot 103639$

Table 4. Padé approximants to $\left(x_{\mathrm{c}}-x\right) \mathrm{d}\left(\ln \chi_{\mathbf{s}}(x)\right) /\left.\mathrm{d} x\right|_{x_{\mathrm{c}}=0.379003}$.

N	$[N-1 / N]$	$[N / N]$	$[N+1 / N]$
3	$2 \cdot 1703$	$2 \cdot 1541$	$2 \cdot 1621$
4	$2 \cdot 2958$	$2 \cdot 1404$	$2 \cdot 1352$
5	$2 \cdot 1361$	$2 \cdot 1503$	$2 \cdot 1219$
6	$2 \cdot 1248$	$2 \cdot 1128$	$2 \cdot 1096$
7	$2 \cdot 1099$	$2 \cdot 1109$	$2 \cdot 1106$
8	$2 \cdot 1106$	$2 \cdot 1110$	$2 \cdot 1072$
9	$2 \cdot 1082$	$2 \cdot 1144$	$2 \cdot 1559$

Using the generally accepted values of γ and ν in two and three dimensions ($\gamma=\frac{4}{3} \cdot \frac{7}{6}$, and $\nu=\frac{3}{4}, \frac{3}{5}$ respectively), the scaling predictions for γ_{s} are $\frac{25}{12} \simeq 2.083$ and $\frac{53}{30} \simeq 1.77$ respectively. The central estimates from the series analysis exceed the predictions by 0.02 and 0.04 respectively, while taking the lowest values consistent with the series results still leaves discrepancies of 0.01 and 0.02 respectively. Notice that the deviation from scaling is in the same direction as for the Ising and Heisenberg models.

Of course, γ and ν are not known exactly and it is conceivable that the generally assumed values might be in error by amounts of the order of 0.01 . To circumvent this uncertainty, and to avoid the use of an assumed value for μ, we have formed the series

$$
b_{n}=c_{n}\left\langle R_{n}^{2}\right\rangle^{1 / 2} / a_{n}
$$

which should behave asymptotically as $b_{n} \sim n^{\phi}$ with $\phi=\gamma+\nu-\gamma_{\mathrm{s}}$. If scaling is obeyed ϕ should be zero. Estimates of ϕ are given by the sequence $\left\{\phi_{n}\right\}$, where $\phi_{n}=$ $(n / 2)\left(b_{n} / b_{n-2}-1\right)$. This sequence and linear, quadratic and cubic extrapolants are shown in table 5. From those results we estimate $\phi \geqslant-0.02$ in two dimensions and $\phi=-0.05 \pm 0.02$ in three dimensions. These results are estimates of the maximum extent of the possible errors in scaling predictions of γ_{s}. The estimates of ϕ are also completely consistent with our direct estimates of γ_{s} quoted above, from which it follows that $\phi=-0.017 \pm 0.01$ and $\phi=-0.04 \pm 0.02$ in two and three dimensions respectively.

Table 5. Neville table showing estimates of 'breakdown of scaling exponent' ϕ.

Simple cubic lattice					Square lattice			
		Alternate extrapolants			n	ϕ_{n}	Alternate extrapolants	
n	ϕ_{n}	linear	quadratic	cubic			linear	quadratic
6	-0.2362	-0.0551			12	-0.1041		
7	-0.2172	-0.0845	-0.9584		13	-0.0984	-0.03916	
8	-0.2019	-0.0992	-0.1433		14	-0.0948	-0.0388	
9	-0.1899	-0.0945	-0.1070	0.3188	15	-0.0902	-0.0366	-0.0294
10	-0.1797	-0.0909	-0.0784	-0.0352	16	-0.0873	-0.0349	-0.0230
11	-0.1707	-0.0842	-0.0663	-0.0323	17	-0.0835	-0.0326	-0.0239
12	-0.1632	-0.0806	-0.0601	-0.0418	18	-0.0811	-0.0320	-0.0219
13	-0.1562	-0.0766	-0.0596	-0.0518	19	-0.0780	-0.0309	-0.0208
14	-0.1505	-0.0741	-0.0577	-0.0545	20	-0.0760	-0.0296	-0.0201

Three possible explanations for this behaviour suggest themselves. One is the breakdown of the scaling relation $\gamma_{\mathrm{s}}=\gamma+\nu$. Another is that the correlation exponent appropriate to the surface problem is different to the correlation function appropriate to the bulk problem. The third possibility is that these results are produced by analysis of series of insufficient length. At present we have no reason to select one of these explanations as being the more likely.

Acknowledgments

A J Guttmann wishes to acknowledge the hospitality of the Chemistry Department at the University of Toronto. This work was financially supported by the National Research Council of Canada.

References

Barber M N 1973 Phys. Rev. B 8407
Barber M N, Guttmann A J, Middlemiss K M, Torrie G M and Whittington S G 1978 J. Phys. A: Math. Gen. 111833
Binder K and Hohenberg P C 1972 Phys. Rev. B 63461

- 1974 Phys. Rev. B 92194

Bray A J and Moore M A 1977 J. Phys. A: Math. Gen. 101927

Fisher M E 1971 Proc. 51st Enrico Fermi Summer School ed M S Green (New York: Academic)

- 1973 J. Vac. Sci. Technol. 10665

Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3 ed C Domb and M S
Green (London: Academic)
Ritchie D S and Fisher M E 1973 Phys. Rev. B 7480
Sykes M F, Guttmann A J, Watts M G and Roberts P D 1972 J. Phys. A: Gen. Phys. 5653.
Watson P G 1972 Phase Transitions and Critical Phenomena vol 2 ed C Domb and M S Green (London: Academic)
Whittington S G 1975 J. Chem. Phys. 63779
Whittington S G, Torrie G M and Guttmann A J 1979 J. Phys. A: Math. Gen. 122449

